Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(1): 012502, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841540

RESUMO

A near-threshold proton resonance in ^{11}B at E_{ex}=11.44±0.04 MeV is observed via the reaction ^{10}Be(d,n)^{11}Be→^{10}Be+p in inverse kinematics, measured with a beam of the radioactive isotope ^{10}Be. The resonance energy at E_{res}=211(40) keV is consistent with a proton signal observed by Ayyad et al. in the ß-delayed proton decay of ^{11}Be. By comparison to a distorted wave Born approximation calculation, a 0.27(6) spectroscopic factor is extracted and a tentative (ℓ=0) character is assigned for this resonance. The significant cross section in the proton-transfer (d,n) reaction, as well as the observation of its proton-decay signal, point to the threshold-resonance character of this state. The position of this state, its structure, and strong coupling to the s-wave continuum represent an ideal case to study quantum near-threshold many-body dynamics of unstable states. The presence of this state is an important step toward understanding the excessively large beta-delayed proton-decay branch of ^{11}Be.

2.
Phys Rev Lett ; 123(23): 239902, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868430

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.122.182701.

3.
Phys Rev Lett ; 122(18): 182701, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144906

RESUMO

The cross sections of nuclear reactions between the radioisotope ^{7}Be and deuterium, a possible mechanism of reducing the production of mass-7 nuclides in big-bang nucleosynthesis, were measured at center-of-mass energies between 0.2 and 1.5 MeV. The measured cross sections are dominated by the (d,α) reaction channel, towards which prior experiments were mostly insensitive. A new resonance at 0.36(5) MeV with a strength of ωγ=1.7(5) keV was observed inside the relevant Gamow window. Calculations of nucleosynthesis outcomes based on the experimental cross section show that the resonance reduces the predicted abundance of primordial ^{7}Li, but not sufficiently to solve the primordial lithium problem.

4.
Phys Rev Lett ; 117(18): 182701, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835017

RESUMO

The ^{19}Ne(p,γ)^{20}Na reaction is the second step of a reaction chain which breaks out from the hot CNO cycle, following the ^{15}O(α,γ)^{19}Ne reaction at the onset of x-ray burst events. We investigate the spectrum of the lowest proton-unbound states in ^{20}Na in an effort to resolve contradictions in spin-parity assignments and extract reliable information about the thermal reaction rate. The proton-transfer reaction ^{19}Ne(d,n)^{20}Na is measured with a beam of the radioactive isotope ^{19}Ne at an energy around the Coulomb barrier and in inverse kinematics. We observe three proton resonances with the ^{19}Ne ground state, at 0.44, 0.66, and 0.82 MeV c.m. energies, which are assigned 3^{+}, 1^{+}, and (0^{+}), respectively. In addition, we identify two resonances with the first excited state in ^{19}Ne, one at 0.20 MeV and one, tentatively, at 0.54 MeV. These observations allow us for the first time to experimentally quantify the astrophysical reaction rate on an excited nuclear state. Our experiment shows an efficient path for thermal proton capture in ^{19}Ne(p,γ)^{20}Na, which proceeds through ground state and excited-state capture in almost equal parts and eliminates the possibility for this reaction to create a bottleneck in the breakout from the hot CNO cycle.

5.
Phys Rev Lett ; 114(7): 071101, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25763945

RESUMO

The 12C(α,γ)^16O reaction plays a fundamental role in astrophysics and needs to be known with accuracy better than 10%. Cascade γ transitions through the excited states of 16 O are contributing to the uncertainty. We constrained the contribution of the 0+ (6.05 MeV) and 3- (6.13 MeV) cascade transitions by measuring the asymptotic normalization coefficients for these states using the α-transfer reaction 6 Li(12C,d)^16O at sub-Coulomb energy. The contribution of the 0+ and 3- cascade transitions at 300 keV is found to be 1.96 ± 0.3 and 0.12 ± 0.04 keV b for destructive interference of the direct and resonance capture and 4.36 ± 0.45 and 1.44 ± 0.12 keV b for constructive interference, respectively. The combined contribution of the 0+ and 3- cascade transitions to the 12C(α,γ)16O reaction cross section at 300 keV does not exceed 4%. Significant uncertainties have been dramatically reduced.

6.
Phys Rev Lett ; 97(19): 192701, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17155619

RESUMO

The reaction 13C(alpha,n) is considered to be the main source of neutrons for the s process in asymptotic giant branch stars. At low energies, the cross section is dominated by the 1/2+ 6.356 MeV subthreshold resonance in (17)O whose contribution at stellar temperatures is uncertain by a factor of 10. In this work, we performed the most precise determination of the low-energy astrophysical S factor using the indirect asymptotic normalization (ANC) technique. The alpha-particle ANC for the subthreshold state has been measured using the sub-Coulomb alpha-transfer reaction ((6)Li,d). Using the determined ANC, we calculated S(0), which turns out to be an order of magnitude smaller than in the nuclear astrophysics compilation of reaction rates.

7.
Nature ; 435(7044): 922-4, 2005 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-15959511

RESUMO

Nuclear shell structures--the distribution of the quantum states of individual protons and neutrons--provide one of our most important guides for understanding the stability of atomic nuclei. Nuclei with 'magic numbers' of protons and/or neutrons (corresponding to closed shells of strongly bound nucleons) are particularly stable. Whether the major shell closures and magic numbers change in very neutron-rich nuclei (potentially causing shape deformations) is a fundamental, and at present open, question. A unique opportunity to study these shell effects is offered by the 42Si nucleus, which has 28 neutrons--a magic number in stable nuclei--and 14 protons. This nucleus has a 12-neutron excess over the heaviest stable silicon nuclide, and has only one neutron fewer than the heaviest silicon nuclide observed so far. Here we report measurements of 42Si and two neighbouring nuclei using a technique involving one- and two-nucleon knockout from beams of exotic nuclei. We present strong evidence for a well-developed proton subshell closure at Z = 14 (14 protons), the near degeneracy of two different (s(1/2) and d(3/2)) proton orbits in the vicinity of 42Si, and a nearly spherical shape for 42Si.

8.
Phys Rev Lett ; 93(14): 142503, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15524786

RESUMO

We report on the g factor measurement of an isomer in the neutron-rich (61)(26)Fe (E(*)=861 keV and T(1/2)=239(5) ns). The isomer was produced and spin aligned via a projectile-fragmentation reaction at intermediate energy, the time dependent perturbed angular distribution method being used for the measurement of the g factor. For the first time, due to significant improvements of the experimental technique, an appreciable residual alignment of the nuclear spin ensemble has been observed, allowing a precise determination of its g factor, including the sign: g=-0.229(2). In this way we open the possibility to study moments of very neutron-rich short-lived isomers, not accessible via other production and spin-orientation methods.

9.
Phys Rev Lett ; 90(2): 022501, 2003 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-12570541

RESUMO

The 7Be(p,gamma)8B reaction plays a central role in the evaluation of solar neutrino fluxes. We report on a new precision measurement of the cross section of this reaction, following our previous experiment with an implanted 7Be target, a raster-scanned beam, and the elimination of the backscattering loss. The new measurement incorporates a more abundant 7Be target and a number of improvements in design and procedure. The point at E(lab)=991 keV was measured several times under varying experimental conditions, yielding a value of S17(E(c.m.)=850 keV)=24.0+/-0.5 eV b. Measurements were carried out at lower energies as well. Because of the precise knowledge of the implanted 7Be density profile, it was possible to reconstitute both the off- and on-resonance parts of the cross section and to obtain from the entire set of measurements an extrapolated value of S17(0)=21.2+/-0.7 eV b.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...